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Schlüter, D.K., Ndeffo-Mbah, M.L., Takougang, I., Ukety, T., Wanji, S.,
Galvani, A.P. and Diggle, P.J. (2016). Using community-level prevalence of Loa
loa infection to predict the proportion of highly-infected individuals: statistical
modelling to support lymphatic filariasis elimination programs. PLoS Neglected
Tropical Diseases (submitted).

R packages: geoR, PrevMap



Acknowledgements

MLW, Blantyre, Malawi Sanie Sesay, Anja Terlouw

APOC, Ouagadougou: Hans Remme, Honorat Zoure, Sam Wanji

IRI, Columbia University: Madeleine Thomson

...and many others



Low resource settings



Prevalence mapping

Single prevalence survey

Sample n individuals, observe Y positives

Y ∼ Bin(n, p)

Multiple prevalence surveys

Sample ni individuals, observe Yi positives, i = 1, ...,m

Yi ∼ Bin(ni , pi ) ?

Extra-binomial variation

Sample ni individuals, observe Yi positives, i = 1, ...,m

Yi |di ,Ui ∼ Bin(ni , pi ) log{pi/(1− pi )} = d ′i β + Ui

This talk

What to do if the di and/or the Ui are spatially structured



Geostatistics

Traditionally a self-contained methodology for spatial
prediction, developed at École des Mines,
Fontainebleau, France

Nowadays that part of spatial statistics that is
concerned with data obtained by spatially discrete
sampling of a spatially continuous process

Geostatistical prevalence data

(ni , yi , di , xi ) : i = 1, ..., n



Loa loa prevalence surveys in West Africa
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Model-based (Diggle, Moyeed and Tawn, 1998)

The application of general principles of statistical
modelling and inference to geostatistical problems

− formulate a model for the data

− use likelihood-based methods of inference

− answer the scientific question

Design is also important, but not considered in DM&T (1998).



Statistical modelling principles

models are devices to answer questions

models should:

be not demonstrably inconsistent with the data;

incorporate the underlying science, where this is well understood

be as simple as possible, within the above constraints

“Too many notes, Mozart”

Emperor Joseph II

“Only as many as there needed to be”

Mozart (apochryphal?)



Empirical modelling: The AEGISS project
(Diggle, Rowlingson and Su, 2005)

early detection of anomalies in
local incidence

data on 3374 consecutive
reports of non-specific
gastro-intestinal illness

log-Gaussian Cox process,
space-time correlation ρ(u, v)



Mechanistic modelling: the 2001 UK FMD epidemic
(Diggle, 2006)

Predominantly a classic epidemic
pattern of spread from an initial
source

Occasional apparently
spontaneous outbreaks remote
from prevalent cases

λ(x, t|Ht) =conditional
intensity, given history Ht



Onchocerciasis (River Blindness)



African Programme for Onchocerciasis Control (APOC)

Ivermectin (Mectizan): provides
long-term protection if taken
annually

generally considered safe, with
no serious side-effects

mass distribution made possible
by donation programme (Merck)

multi-national programme
coordinated by WHO

recent decision to raise ambition
from control to elimination

Loa loa: a spanner in the works



Loa loa young



...and old



The Loa loa prediction problem

Ground-truth survey data

random sample of subjects in each of a number of villages

blood-samples test positive/negative for Loa loa

Environmental data (satellite images)

measured on regular grid to cover region of interest

elevation, green-ness of vegetation

Objectives

predict local prevalence throughout study-region (Cameroon)

compute local exceedance probabilities,

P(prevalence > 0.2|data)



Statistical prediction: Bayes’ Theorem

“The answer to any prediction problem is a probability distribution”

Peter McCullagh

S = state of nature
Y = all relevant data
T = F(S) = target for prediction

Model: [S,Y ] = [S][Y |S]
Prediction: [S,Y ]⇒ [S|Y ]⇒ [T |Y ]



The Loa loa modelling strategy

use relationship between environmental variables and
ground-truth prevalence to construct preliminary
predictions via logistic regression

use local deviations from regression model to estimate smooth
residual spatial variation

model-based approach acknowledges uncertainty in predictions



Loa loa: a generalised linear model

Latent spatially correlated process

S(x) ∼ SGP{0, σ2, ρ(u))}
ρ(u) = exp(−|u|/φ)

Linear predictor (regression model)

d(x) = environmental variables at location x

η(x) = d(x)′β + S(x)
p(x) = log[η(x)/{1− η(x)}]

Conditional distribution for positive proportion Yi/ni

Yi |S(·) ∼ Bin{ni , p(xi )} (binomial sampling)



logit prevalence vs elevation
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logit prevalence vs max NDVI
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How useful is the geostatistical modelling?

Predicted prevalence - 'without ground truth data'
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Probabilistic exceedance map for Cameroon
(Diggle et al, 2007)



Extending the model

Non-spatial extra-binomial variation

Low-rank approximations

Zero-inflation

Spatio-temporal variation

Multivariate spatial variation



Spatially structured zero-inflation

public health experts have strong sense that some areas are
fundamentally unsuitable for onchocerciasis transmission

hence need to incorporate mix of structural and chance zeros

Non-spatial model

Yi ∼
{

0 : wp qi
Bin(ni , pi ) : wp 1− qi

Spatial model

{qi , pi} → {Q(x),P(x)} : x ∈ IR2 ∼ bivariate stochastic process



Double logistic Gaussian process

P(Y = y |S(x)) =

{
Q(x) + (1− Q(x))× Bin(0; n,P(x)) : y = 0

(1− Q(x))× Bin(y ; n,P(x)) : y > 0

S(x) = {S1(x), S2(x)} ∼ bivariate Gaussian process

logit(Q(x)) = µ1 + S1(x)

logit(P(x)) = µ2 + S2(x)



Mozambique/Malawi/Tanzania: probability exceedance
map
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Spatio-temporal mapping: rolling malaria indicator surveys

Hotspots: P(prevalence > 20%)



Loa loa revisited: identifying “safe” communities

People who are highly infected with Loa loa parasites are at
risk of serious adverse reactions to Mectizan

Measuring individual parasite load in the field is difficult

Can we predict proportion of highly infected individuals given
only an estimate of prevalence?



Identifying “safe” communities: formulating the question

Individual-level infection: Y (parasites per ml of blood)

Community-level prevalence: P(Y > 0)

High-risk individual: Y > c c = 8000, 20000, 30000?

Target for prediction: proportion (⇒ number) of highly infected
individuals in a community

Data from a single community:

n : number of individuals tested
Z : number testing positive

Required: P(Y > c|Z ; n)



Data for model-building

Provided by Task Force for Global Health in two stages (with
thanks to original sources):

1 development data: 222 communities in Cameroon, Congo
and DRC

2 validation data: 245 communities in Equatorial Guinea, Gabon
and Cameroon



Cumulative distribution of infection levels (5 villages)
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Gamma or Weibull?

D = 2(L̂W − L̂G)
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The statistical model
P=prevalence; T=proportion highly infected
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Village-specific parameter estimates: 156 villages in
development set

log−odds of estimated prevalence
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Model-fitting: maximum likelihood estimation

θ = (α, β, κ,Σ) → ρ = ρ(α,U), λ = λ(β,V )

log-likelihood contribution from single village, i

ni = number sampled, zi = number positive

yij : j = 1, ..., ni ; (yij > 0 : j = 1, ...zi ≤ ni )

Li (θ|U,V ) = (ni−zi ) log(1−ρ)+zi log ρ+
∑zi

j=1 logG ′(yij ; ρ, λ)

Li (θ) =
∫ ∫

Li (θ|U,V )BVN(0,Σ)dUdV

log-likelihood from m villages

L(θ) =
∑m

i=1 Li (θ)

integration by quasi Monte Carlo (Gaussian quadrature) or
MCMC (Metropolis)



Model-fitting: results

Within a community:

probability that individual infection level is greater than x :

G(x) = P exp{−(x/L)κ}

log{P/(1− P)} = α + U log L = β + V

α̂ = −2.47 β̂ = 8.20 κ̂ = 0.56

Between communities:

(U,V ) ∼ zero-mean bivariate Normal

σ2
U = 2.89 σ2

V = 0.48 ρ = 0.74



Predicted random effects (conditional expectations)
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Results: predictive distributions and 95% intervals
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But we can now do better



The Loa loa problem re-formulated

People who are highly infected with Loa loa parasites are at risk of
serious adverse reactions to Mectizan

Define a safe community as one for which the proportion of
individuals carrying at least c parasites/per ml blood is at
most q

Example: c = 8000 20000? 30000? q = 0.01? 0.005?

New technology (cellscope) allows routine collection of data
on (approximate) individual levels of infection (parasites/per
ml blood)

Given such data on a sample of individuals:

calculate the probability that the community is safe
set an upper limit for the probable number of highly infected
people in the community



Selected results from validation data: P(safe)

ID n npos n above c = 20k, q = c = 30k, q = µ+

20k 30k 0.005 0.01 0.005 0.01

Equatorial Guinea

4844 44 13 0 0 0.017 0.1 0.12 0.39 3549.2
4864 44 10 0 0 0.37 0.66 0.69 0.89 760.0

Gabon

6270 37 7 0 0 0.13 0.39 0.39 0.7 2857.1
9068 37 1 0 0 0.9 0.97 0.96 0.99 40.0

Cameroon

4403 140 2 0 0 0.99 1.00 1.00 1.00 2050.0
NA 140 27 3 2 0.0012 0.047 0.05 0.37 6785.9



The finite population correction

Community size N, sample size n, of whom n+ are highly infected

Predictive target thus far is:

Q = probability that a randomly sampled individual
is highly infected

To predict actual number, H, of highly infected individuals:

1 Sample a value q from predictive distribution of Q

2 Sample a value m from binomial distribution,

M ∼ Bin(N − n, q)

3 Repeat 1 and 2 many times to give sample from predictive
distribution of M, and hence of H = n+ + M



Selected results from validation data: 95% upper limit on
number at risk

ID n npos m30k number of highly infected individuals
N=500 N=1000 N=5000

Equatorial Guinea

4844 44 13 0 5 (1, 17) 12 (2, 34) 61 (16, 171)
4864 44 10 0 1 (0, 7) 3 ( 0, 14) 15 ( 1, 70)

Gabon

6270 37 7 0 3 (0,12) 6 (0, 23) 32 (5, 116)
9068 37 1 0 0 (0, 3) 0 (0, 5) 2 (0, 21)

Cameroon

4403 140 2 0 0 (0, 1) 0 (0, 2) 1 (0, 8)
NA 140 27 2 6 (3, 12) 12 (5, 25) 59 (25, 123)



Extensions

Current model

Independent (Ui ,Vi ) : i = 1, ...,m ⇒ only village-specific
information is helpful

Borrowing strength

Use information from neighbouring communities

data from communities i = 1, ...,m at locations xi

spatially correlated random effects: (Ui ,Vi )→ (U(xi ),V (xi ))

bivariate Gaussian process model for {(U(x),V (x)) : x ∈ IR2}

which takes us back to model-based geostatistics!



Closing remarks

principled statistical methods

− make assumptions explicit

− deliver optimal estimation within the declared model

− make proper allowance for predictive uncertainty

but there is no such thing as a free lunch

“We buy information with assumptions”

C H Coombs

which is why statistics is at its most effective when conducted
as a dialogue with substantive science

and this should guide the way we teach statistics

Diggle, P.J. (2015). Statistics: a data science for the 21st century.
Journal of the Royal Statistical Society A 178 793–813.



Non-spatial extra-binomial variation

Latent spatially correlated process

S(x) ∼ SGP{0, σ2, ρ(u))} ρ(u) = exp(−|u|/φ)

Latent spatially independent random effects

Ui ∼ iidN(0, ν2)

Linear predictor (regression model)

d(x) = environmental variables at location x

η(xi ) = d(xi )′β + S(xi ) + Ui

p(xi ) = log[η(xi )/{1− η(xi )}]

Conditional distribution for positive proportion Yi/ni

Yi |S(·) ∼ Bin{ni , p(xi )} (binomial sampling)



Low-rank approximations
(Rodrigues and Diggle, 2010)

S(x) ≈ µ +
M∑
j=1

φ−2w{(x − kj )/φ}Zj

w(u): kernel function

Zj ∼ iid N(0, ν2)

kj ∈ A ⊂ IR2: fixed set of points

Choose w(·) to approximate to preferred family of correlation
functions

Computation linear in number of prediction points



Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): 14,473 survey locations



Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): low-rank model

M = 10, 734 points Xj in regular lattice at spacing 0.1 degrees

w(u) to approximate twice-differentiable Matérn correlation,

w(u) = exp(−2
√

2 u)

Parameter estimate 95% confidence interval

µ 2:451 (2.469, 2.432)

ν2 31:570 (31.038, 32.112)

φ 65:208 (64.993, 66.301)



Application: onchocerciasis mapping Africa-wide
(Zoure et al, 2014): exceedance probabilities
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